团队介绍:V-AI团队当前支持抖音直播、开放平台、V项目(AI分身/小火人等)业务方向,涵盖了自然语言处理、计算机视觉、图形学等技术领域,通过大模型技术来创造新的互动玩法、制作美术资产、提升研发运营效率等,当前已上线和开展中的项目包括直播大模型(助播/伴播/独播)、角色多模态对话大模型、研发智能助手、3D模型生成大模型、动作生成大模型等。
课题介绍:
背景:随着虚拟现实、增强现实、数字孪生等技术的快速应用,3D数字资产已成为构建沉浸式数字空间的核心要素。在影视动画、游戏开发、直播、社交等领域,3D模型与3D动作的需求呈现爆发式增长。然而,传统3D内容生产高度依赖人工建模与动作捕捉技术,存在效率低、成本高、创作门槛高等瓶颈,难以满足直播等场景中大规模、高保真、多样化、高频迭代的3D内容需求。近年来,以生成式人工智能(AIGC)为代表的大模型技术在2D图像与视频生成领域取得突破性进展,但在3D内容生成领域仍面临表征复杂、多模态数据稀缺、物理规律约束严格等难题。如何将大模型技术与3D生成任务深度融合,实现“文本/图像到3D模型”、“文本/语音到动作”的高质量生成,形成建模+驱动的一站式美术资产生成管线以适配直播场景下资产迭代速度快,品质要求高的需求是当前的重要研究内容。
课题挑战:
传统方法依赖人工建模工具或程序化生成算法,存在生成效率与创作自由度之间的固有矛盾。AI技术虽然能很好地弥补人工生成效率不足的问题,但仍然存在如下挑战
1. 表征困难:与一维文本和二维图像可以自然地实现结构化表征不同,3D模型由于其多模态(如几何、纹理、材质等)、结构复杂和高维度等特性,使得其表征更为复杂。而3D动作又与物理世界紧密相关,且动态复杂度高。因此,如何高效地表征3D几何形状和3D动作,同时确保高品质的生成,仍然是亟需突破的课题。
2. 生成困难:模型生成需同时保障结构完整性、拓扑合理性和细节丰富性;动作生成需兼顾运动多样性、物理约束与时空连续性。现有方法易出现模型畸变、贴图瑕疵、动作力度不足和多样性差等问题。
3. 数据不足:3D数据标注成本高、多模态对齐难度大,且现有公开数据集规模有限,导致大模型训练面临数据不足的问题;如何把相关模态数据(图像、视频)利用起来,提升3D模型和3D动作的生成品质也是当前的重大挑战。
4. 评估体系不完善:缺乏统一的3D生成质量量化指标,现有评价多依赖人工主观判断,难以客观衡量生成的几何精度、动作自然度与多模态语义一致性,因此建立完善、客观、可量化的评价体系是保障技术迭代的关键基石。
1、负责抖音、抖音直播及相关产品的大语言模型/多模态大模型/AIGC算法研发,如数字人、3D生成、动作生成、智能对话等相关工作;
2、负责关键场景的算法优化,构建高质量的模型和Agent系统,提升业务效果;
3、跟踪AI前沿技术进展,推动前沿技术的产品化落地。
职位要求
1、2026届及之后毕业,博士在读,人工智能、自然语言处理、计算机视觉、计算机图形学相关专业优先;
2、具有优秀的编程能力,熟练使用PyTorch深度学习框架和相关高性能计算框架;
3、具有丰富的自然语言处理、计算机视觉、计算机图形学、强化学习相关研究经验,在Siggraph/CVPR/ICCV/ECCV/ACL/ICLR/ICML/NeurIPS/TPAMI等顶会顶刊上发表论文者优先;
4、熟悉扩散模型、GPT等生成式模型,有大模型训练、智能对话、3D生成、动作生成、数字人相关领域研发经验、有Unity/Unreal引擎使用经验者优先考虑;
5、具备优秀的分析和解决问题的能力,对解决具有挑战性的问题充满激情,具有良好的沟通和团队合作能力。